

```
\(T E_{4}=T E_{B}\)
\(m g h+\frac{1}{2} m v^{2}=T E_{B}=\frac{1}{2} m v^{\prime}{ }^{2}+m g h^{\prime}+3400 \mathrm{~J}\)
\((200)(9.81)(15)+\frac{1}{2}(200)(4)^{2}=\frac{1}{2}(200) V+(200)(9.8)(6)+3400 \mathrm{~J}\)
\((200)(9.81)(9)+1600 \mathrm{~J}=100 \mathrm{v}^{2}+3400 \mathrm{~J}\)
\(17658_{J}+1600_{J}-31000_{J}=100 \mathrm{~V}^{2}\)
```



```
A 200 kg roller coaster is travelling at 4.0 m/s at the top of the first hill
```

A 200 kg roller coaster is travelling at 4.0 m/s at the top of the first hill
15 m high. If 3400 J of heat energy is lost during the ride what is the
15 m high. If 3400 J of heat energy is lost during the ride what is the
speed at point B which is }6.0\textrm{m}\mathrm{ high? Use Total Energy conservation.
speed at point B which is }6.0\textrm{m}\mathrm{ high? Use Total Energy conservation.
pgy+KE

```
    pgy+KE
```

Dec 3-3:52 PM

