Universal Gravitation

1.A satellite orbits around Earth at a distance of $1.28 \times 10^{7} \mathrm{~m}$ from the centre of the Earth. The satellite weighs 6000 N on the surface of Earth. For the satellite in orbit calculate it's a) mass, b) weight and c) speed.
($612 \mathrm{~kg}, 1.49 \times 10^{3} \mathrm{~N}, 5.58 \times 10^{3} \mathrm{~m} / \mathrm{s}$)
2.A satellite which weighs $1.0 \times 10^{4} \mathrm{~N}$ on the surface of Earth is put into circular orbit $7.05 \times 10^{8} \mathrm{~m}$ above the Earth's surface. Calculate: a) its mass b) its weight c) its velocity and d) its acceleration towards the Earth. $\quad\left(1.0 \times 10^{3} \mathrm{~kg}, 0.79 \mathrm{~N}, 7.5 \times 10^{2} \mathrm{~m} / \mathrm{s}, 0.00079\right) \mathrm{m} / \mathrm{s}^{2}$
3.A satellite orbits Neptune in 200 minutes. The radius of its orbit is $2.92 \times 10^{7} \mathrm{~m}$. Calculate: a) the average speed of the satellite and b) its centripetal acceleration. $\left(1.53 \times 10^{4} \mathrm{~m} / \mathrm{s}, 8.01 \mathrm{~m} / \mathrm{s}^{2}\right)$
4.What orbital speed must a satellite of mass 800 kg have in order to maintain an orbit $2.00 \times 10^{7} \mathrm{~m}$ above the surface of Jupiter where the gravitational field strength is $15 \mathrm{~m} / \mathrm{s}^{2}$? What would it weigh at this height?
$3.7 \times 10^{4} \mathrm{~m} / \mathrm{s}, 1.2 \times 10^{4} \mathrm{~N}$)
5.Compute the gravitational force between a proton and an electron using the following data:
mass of proton $=1.67 \times 10^{-27} \mathrm{~kg}$
$\left(3.63 \times 10^{-47} \mathrm{~N}\right)$
mass of electron $=9.11 \times 10^{-31} \mathrm{~kg}$
radius of orbit of an electron $=5.29 \times 10^{-9} \mathrm{~cm}$.
6.A space explorer is 1 billion km away from a certain star and she observes that the gravitational force between herself and the star is 1000 N . What will this force be when she is half a billion km from the star?
(4000 N)
7.A satellite circles the Earth once every 95 minutes at an average altitude of 500 km . Calculate the mass of the Earth.
$\left(5.9 \times 10^{24} \mathrm{~kg}\right)$
8.A satellite put into circular orbit around Uranus weighs $2.0 \times 10^{4} \mathrm{~N}$ on Earth. The radius of the satellite's orbit is $4.0 \times 10^{7} \mathrm{~m}$. Calculate: a) the period of the satellite, b) its orbital velocity c) the force needed to maintain this orbit, d) the centripetal acceleration and e) the mas of Uranus.

$$
\left(2.1 \times 10^{4} \mathrm{~s}, 1.2 \times 10^{4} \mathrm{~m} / \mathrm{s}, 7.2 \times 10^{3} \mathrm{~N}, 3.6 \mathrm{~m} / \mathrm{s}^{2}, 8.6 \times 10^{25} \mathrm{~kg}\right)
$$

9.A satellite which weighs $7.0 \times 10^{3} \mathrm{~N}$ on Earth is put into orbit 200 km above the surface of Mars. For the satellite find: a) mass \quad b) weight in orbit c) the gravitational field strength acting on it and d) the centripetal acceleration. $\quad\left(7.1 \times 10^{2} \mathrm{~kg}, 2.3 \times 10^{3} \mathrm{~N}, 3.2 \mathrm{~m} / \mathrm{s}^{2}, 3.4 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)$
10.A satellite with a mass of 640 kg is in orbit above the surface of the Earth where the gravitational field strength is $8.6 \mathrm{~m} / \mathrm{s}^{2}$. What is the gravitational force on the satellite at this height? $\left(5.5 \times 10^{3} \mathrm{~N}\right)$
11.A 1000 kg satellite is put into a circular orbit above Earth so that it always remains over the same place on Earth. (This is called a synchronous orbit.) a) What is the radius of this orbit?
b) What would the satellite weigh in orbit?
c) How fast does it go while orbiting?
($4.22 \times 10^{7} \mathrm{~m}, 224 \mathrm{~N}, 3.07 \times 10^{3} \mathrm{~m} / \mathrm{s}$)

